关闭广告

超越纯视觉模型!不改VLM标准架构,实现像素级深度预测

新智元2025-10-20 00:00:020人阅读


新智元报道

编辑:LRST

【新智元导读】Meta开源DepthLM,首证视觉语言模型无需改架构即可媲美纯视觉模型的3D理解能力。通过视觉提示、稀疏标注等创新策略,DepthLM精准完成像素级深度估计等任务,解锁VLM多任务处理潜力,为自动驾驶、机器人等领域带来巨大前景。

在当前多模态AI发展浪潮中,视觉语言模型(Vision Language Models, VLMs)因其能通过「看图 + 文字交互」处理多样任务而备受关注。

然而,尽管在语义理解、视觉问答、图像指令等任务上表现优异,它们在从 2D 图像理解 3D 空间结构方面仍显薄弱。相比之下,纯视觉模型(pure vision models)在 绝对深度估计(metric depth estimation) 等三维理解任务上,凭借专门设计的网络结构与损失函数,早已达到了超越人类的精度。

这就带来了一个核心问题:「视觉语言模型是否有可能不更改其标准架构及训练loss,实现与纯视觉模型同等级别的3D理解能力?」

Meta开源了一项突破性研究工作DepthLM,首次证明了该问题的答案是肯定的!

DepthLM首次证明了语言模型也能准确理解三维空间,并且比专家视觉模型具有更好的灵活性及泛化性。

DepthLM证明了,在无需改动架构的前提下,就能让视觉语言模型(VLM) 在像素级「绝对深度估计」等三维视觉任务上达到与纯视觉模型相媲美的水平。

在此之前,即便是最先进的VLM如GPT-5和Gemini2.5-Pro等,在绝对深度估计上均远远落后于纯视觉模型。


论文地址:https://arxiv.org/pdf/2509.25413

代码地址:https://github.com/facebookresearch/DepthLM_Official

Huggingface模型地址:https://huggingface.co/facebook/DepthLM

DepthLM通过对VLM训练的各个模块的详细分析,发现了当前VLM无法理解三维空间的核心问题并非缺乏额外密集预测头(dense head),复杂回归损失或密集的监督信号,而是无法准确理解像素位置(pixel reference)以及难以分辨不同的相机参数(cameraambiguity)。


基于以上发现,DepthLM通过下述技术,实现了「不改动VLM架构、不引入额外密集预测头(dense head)与复杂回归损失」的情况下,使VLM解锁精确像素级深度预测能力 。

视觉提示(visual prompting):在图像上直接渲染一个小标记(marker)指向询问像素,相比用文字描述 (X,Y) 坐标,模型更直观地「看到」像素的位置;

基于内参的图像增强(intrinsic-conditioned augmentation):把所有图像统一成一个焦距尺度,消除因相机参数差异导致尺度混乱,使模型学习一致的度量尺度;

稀疏标签(sparse labels)监督:每张图像只标注1-2个像素即可,降低标注成本,仍能训练出高精度模型;

标准的SFT:基于文字的next token prediction范式及cross entropy,无需设计额外回归loss或正则项。


研究人员还构建了一个综合 3D 任务 benchmark 套件DepthLMBench,用于训练与评测VLM在各种室内 / 室外深度任务上的表现。

此外,DepthLM并不局限于单一深度预测任务:同一个框架还被扩展到了五类代表性3D任务(例如时间、速度、相机运动估计等),展现出统一模型处理多任务的潜力。


论文作者蔡志鹏是Meta的高级研究员。主要研究方向是优化、感知和多模态生成等通用计算机视觉/机器学习问题,论文曾评为ECCV18年12篇最佳论文之一,获得英特尔实验室2024年最佳学者奖。


实验结果

在多个公开数据集(如Argoverse2、DDAD、NuScenes、ScanNet++、sunRGBD、iBims1、NYUv2、ETH3D等)上,DepthLM 的δ₁指标(预测误差在±25%范围内比例)可达0.83+水平,显著优于几乎所有现有VLM方法。


同时,DepthLM首次实现了媲美纯视觉模型(即那些为深度估计专门设计的模型)的准确率,超过Depth Pro及Metric3Dv2


有趣的是,DepthLM虽然只在每张训练图像上见过最多2个标记点,仍能够通过对一张图上的每一个像素独立提问,获得高质量的点云。

尤为令人惊喜的是,DepthLM在没有任何后处理或正则化损失的情况下,自然避免了过度平滑(over-smoothing)问题:在边界区域产生的「飞点」(flying points)远比纯视觉模型少。


多任务实验表明,DepthLM由于其训练范式的简单及可拓展性,可实现在同一模型下胜任多种3D任务,且在更复杂的任务如相机姿态估计(pose)上与SOTA VLM的性能差距进一步扩大。


研究意义及应用前景

VLM向3D世界理解迈进一步DepthLM表明,视觉语言模型并非天生只能处理语义与二维任务,通过恰当提示与训练策略,它们同样可以解锁精确的几何理解能力。

这一发现证明了专家视觉模型的架构(密集预测头,DINO backbone)以及复杂训练损失均不是实现空间智能的必要条件。

统一模型与多任务整合的可能性传统深度估计模型往往为每个任务都要设计单独头或结构,而DepthLM首次提供了一条「单一VLM覆盖多任务」的路径。

降低标注 / 架构设计成本DepthLM 的稀疏标注方式大幅降低训练数据的标注负担,同时避免了为不同任务设计复杂模块的工程代价。

在机器人、自动驾驶、增强现实等领域具备实际潜力对于需要将二维视觉输入变为深度理解的系统(如自动导航、场景重建、感知增强等),DepthLM 的通用性和精度具有很强吸引力。

结语

DepthLM的出现,标志着视觉语言模型在三维理解方向上的一次突破性进展。它揭示了一种新的路径:通过「提示 + 稀疏微调」,不动结构就能让VLM达到传统深度模型的水准。

这既是科研层面的里程碑,也为未来在实际系统中统一多模态推理能力提供了可能。

研究人员期待DepthLM后续在机器人、自动驾驶、增强现实等场景中的落地应用。

参考资料:

https://arxiv.org/pdf/2509.25413

版权与免责声明:本文内容转载自其他媒体,目的在于传递更多信息,不代表本网观点或立场,不承担此类作品侵权行为的自己责任及连带责任。
猜你喜欢
精彩推荐

迈向球星之路!弗拉格成为SLAM杂志最新一期的封面人物

直播吧 浏览 1 08-27

光阴的故事丨接力放映露天电影70载 他们用坚守点亮光影记忆

北青网-北京青年报 浏览 2 09-21

罗马诺:利物浦准备向16岁的小将恩古莫哈提供一份新合同

懂球帝 浏览 1 08-26

从澳网到温网,每逢重大赛场,若遇美国选手,萨巴必败北

网球之家 浏览 8457 07-22

“穿”上丝巾的鞠婧祎,好有生命力

时尚COSMO 浏览 4189 08-04

这才是打开秋季的穿衣方式!衣服不贪多、搭配得体,养眼舒适

静儿时尚达人 浏览 1 09-25

莫迪乘普京专车共同前往双边会晤地点 车上交谈一小时

澎湃新闻 浏览 1 09-02

35+款漂亮包包!百搭好看!挑花眼了!

Yuki女人故事 浏览 9301 07-28

今年最流行的10条裙子,谁穿谁美!

LinkFashion 浏览 3929 06-02

特斯拉被罚2.43亿美元 换中国公司呢?

管老师 浏览 9745 08-05

特斯拉Optimus机器人产量仅数百台,远不及马斯克“5000台”目标

IT之家 浏览 957 07-26

神马电力回购计划引“10cm”涨停,实控人家族计划继续减持

时代周报 浏览 1977 07-31

4天参观人次达35万,这场AI盛会给上海和世界留下了什么?

澎湃新闻 浏览 7984 07-30

丹朱马:希望瓦伦球迷喜欢看我踢球,想尽快在比赛中展示我的实力

直播吧 浏览 8150 08-11

中网的金元攻势猜想:巨额奖金能否砸出“第五大满贯”?

网球之家 浏览 4978 08-11

“豆瓣鹅组” 解封更名为“豆瓣π组”,杨迪发帖 “试水”

扬子晚报 浏览 1312 07-30

vivo Vision 探索版混合现实头显预热视频公布,今年不会公开销售

IT之家 浏览 6721 08-13

加沙多地遭袭击 以军发出大规模撤离令

环球网资讯 浏览 7111 05-22

曼晚:曼联官方确认杰克-弗莱彻正随一线队备战阿森纳

直播吧 浏览 3207 08-14

外媒:泽连斯基向特朗普展示俄境内潜在打击目标地图

环球网资讯 浏览 5 10-18

优必选发布全球首个可自主换电人形机器人,副总裁焦继超:未来还能拧螺丝

红星资本局 浏览 7643 08-11
本站所有信息收集于互联网,如本站收集信息侵权,请联系我们及时删除沪ICP备2023013132号-2